Package: adfExplorer2 (via r-universe)

September 11, 2024

Title Access and Manipulate Amiga Disk Files

Version 0.0.2

Author Pepijn de Vries [aut, cre] (0000-0002-7961-6646)
Maintainer Pepijn de Vries <pepijn.devries@outlook.com>

Description Amiga Disk Files (ADF) are virtual representations of 3.5
inch floppy disks for the Commodore Amiga. Most disk drives
from other systems (including modern drives) are not able to
read these disks. The adfExplorer2 package enables you to
establish R connections to files on such virtual DOS-formatted
disks, which can be use to read from and write to those files.

License GPL (>= 3)

Encoding UTF-8

Roxygen list(markdown = TRUE)
RoxygenNote 7.2.3

LinkingTo cppll

Collate 'adfExplorer2-package.R' 'blocks.R' 'compress.R' 'cpp11.R'
'connect_adf.R' 'device_info.R' 'device_create.R' 'helpers.R'
'directory.R' 'entry_info.R' 'imports.R' 'init.R' 'move.R’
'remove.R' 's3_methods.R' 'virtual_path.R'

Depends R (>=3.5.0)
Imports methods, vctrs
Suggests adfExplorer, knitr, rmarkdown

VignetteBuilder knitr
URL https://pepijn-devries.github.io/adfExplorer2/

BugReports https://github.com/pepijn-devries/adfExplorer2/issues
Repository https://pepijn-devries.r-universe.dev

RemoteUrl https://github.com/pepijn-devries/adfExplorer2

RemoteRef master

RemoteSha 834c01e8b84053829c06b591973478430c53516b

https://pepijn-devries.github.io/adfExplorer2/
https://github.com/pepijn-devries/adfExplorer2/issues

2 adf_directory
Contents
adf_directory 2
adf entry_info.o 4
adf_file_con e 5
adf file exiStS e 6
compress_adf 7
connect_adf L 8
copy_adf entry e 9
create_adf device L e e 11
device_type e 13
format.adf device 15
list_adf entries 16
read_adf block 17
remove_adf _entry L. L 18
virtual_path e 20
Index 21
adf_directory Changing and creating directories on a virtual device
Description
adf_directory() shows the current directory of a virtual device, when a file system is present.
When connecting to or creating a new device, the current directory is the disk’s root by default. To
change the current directory, use adf_directory() in combination with the assign operator (<-).
Usage

adf_directory(dev, ...)

S3 method for class 'adf_device'
adf_directory(dev, ...)

adf_directory(dev, ...) <- value

S3 replacement method for class 'adf_device'
adf_directory(dev, ...) <- value

S3 replacement method for class 'adf_device.character'
adf_directory(dev, ...) <- value

S3 replacement method for class 'adf_device.virtual_path'
adf_directory(dev, ...) <- value

make_adf_dir(x, virtual_path, ...)

adf_directory

S3 method for class 'adf_device'
make_adf_dir(x, virtual_path, ...)

S3 method for class 'virtual_path'
make_adf_dir(x, virtual_path, ...)

S3 method for class 'character'
make_adf_dir.adf_device(x, virtual_path, ...)

S3 method for class 'virtual_path'

make_adf_dir.adf_device(x, virtual_path, ...)
Arguments
dev The virtual adf device for which information needs to be obtained. It should

value

virtual_path

Details

be of class adf_device which can be created with create_adf_device() or
connect_adf ().

Ignored

A character string or a virtual_path (see virtual_path()) representing
directory you wish to set as current.

An adf_device or virtual_path class object. The first specifies the device on
which a directory needs to be created. The latter specifies both the directory and
the device on which it needs to be created.

A character string or a virtual_path (see virtual_path()) specifying the
name of the new directory to be created. Should be missing when x is of class
virtual_path

To create a new directory on a device use make_adf_dir() and use a full or relative path name to
specify the new directory name.

See vignette("virtual_paths") for a note on file and directory names on the Amiga.

Value

make_adf_dir () returns the device connection. adf_directory() returns the current directory as
a virtual_path class object.

Author(s)

Pepijn de Vries

Examples

First setup a connection to a virtual device
adz_file <- system.file("example.adz"”, package = "adfExplorer2")
my_device <- connect_adf(adz_file)

4 adf_entry_info

Show the current directory
adf_directory(my_device)

Create a new directory
make_adf_dir(my_device, "DFQ:s/newdir")

Change the current dir to the new directory:
adf_directory(my_device) <- "DFQ:s/newdir”

Close the virtual device
close(my_device)

adf_entry_info Retrieve information from entry headers on virtual ADF devices

Description

Retrieve information from entry (file and directory) headers on virtual ADF devices. Get informa-
tion like entry name, modification date, file size etc.

Usage

adf_entry_info(x, virtual_path, ...)

S3 method for class 'adf_device'
adf_entry_info(x, virtual_path, ...)

S3 method for class 'virtual_path'
adf_entry_info.adf_device(x, virtual_path, ...)

S3 method for class 'character'
adf_entry_info.adf_device(x, virtual_path, ...)

S3 method for class 'virtual_path'
adf_entry_info(x, virtual_path, ...)

S3 method for class 'adf_file_con'

adf_entry_info(x, virtual_path, ...)
Arguments
X Either a virtual device or virtual path.

virtual_path A virtual_path() to be checked for existence. Should be omitted when x is
already a virtual path.

Ignored

adf file_con 5

Value

Returns a named list of entry properties. Elements included in the list depend on the type of entry
(root, directory or file).

Author(s)

Pepijn de Vries

Examples

First setup a connection to a virtual device
adz_file <- system.file("example.adz", package = "adfExplorer2")
my_device <- connect_adf(adz_file)

adf_entry_info(my_device, "DF@:")
adf_entry_info(my_device, "s")

adf_entry_info(my_device, "s/startup-sequence")

close(my_device)

adf_file_con Open a connection to a file on a virtual ADF device

Description

Open a connection to a file on a virtual ADF device. The created connection (if valid) should
be accepted by any R function that reads from or writes to a connection, such as readLines(),
writelLines(), readBin(), writeBin(), etc.

Usage
adf_file_con(x, ..., writable = FALSE)

S3 method for class 'adf_device'
adf_file_con(x, virtual_path, ..., writable = FALSE)

S3 method for class 'character'
adf_file_con.adf_device(x, virtual_path, ..., writable = FALSE)

S3 method for class 'virtual_path'

adf_file_con(x, ..., writable = FALSE)
Arguments
X Either a connection to a virtual ADF device created with connect_adf (), or a

virtual_path created with virtual_path().
Ignored.

6 adf _file_exists

writable A logical value. When TRUE the connection can be used to write to the file on
the virtual device. When FALSE it can only be used to read. Note that a writeable
connection can only be setup on a virtual device that is not write protected.

virtual_path Only required when x is a virtual device of class adf_device. In that case
virtual_path should be a character string representing the path to the file on
the virtual device. See also vignette("virtual_paths").
Value
Returns an R connection that can be handled by any function that accepts a connection for reading
or writing. Remember to call close() after use.
Author(s)

Pepijn de Vries

Examples

First setup a connection to a virtual device
adz_file <- system.file("example.adz"”, package = "adfExplorer2")
my_device <- connect_adf(adz_file)

Open a connection to a file on the virtual device
fcon <- adf_file_con(my_device, "DF@:s/startup-sequence")

Read from the file
my_startup <- readlLines(fcon, warn = FALSE)

Close the file
close(fcon)

Close the virtual device
close(my_device)

adf_file_exists Test if an entry exists on a virtual device

Description

Test if an entry (file or directory) exists on a virtual ADF device. adf_file_exists() is the
equivalent of file.exists() on a virtual ADF device. adf_dir_exists() is the equivalent of
dir.exists() on a virtual ADF device.

Usage

adf_file_exists(x, virtual_path, ...)

S3 method for class 'adf_device'

compress_adf 7

adf_file_exists(x, virtual_path, ...)

S3 method for class 'virtual_path'
adf_file_exists(x, virtual_path, ...)

adf_dir_exists(x, virtual_path, ...)

S3 method for class 'adf_device'
adf_dir_exists(x, virtual_path, ...)

S3 method for class 'virtual_path'

adf_dir_exists(x, virtual_path, ...)
Arguments
X Either a virtual device or virtual path.

virtual_path A virtual_path() to be checked for existence. Should be omitted when x is
already a virtual path.

Ignored

Value

adf_file_exists() returns TRUE if the path exists on the virtual device, FALSE otherwise. adf_dir_exists()
returns TRUE when the path exists and is a directory, FALSE otherwise.

Author(s)

Pepijn de Vries

Examples

First setup a connection to a virtual device
adz_file <- system.file("example.adz", package = "adfExplorer2")
my_device <- connect_adf(adz_file)

adf_file_exists(my_device, "s/startup-sequence”)
adf_dir_exists(my_device, "s/startup-sequence”)

close(my_device)

compress_adf Compress ADF to ADZ files and vice versa

Description

The ADZ format is essentially a compressed (gzip) version of the Amiga Disk File (ADF) format.
The adfExplorer2 allows you to connect to both formats. However, you can only open a ’read-
only’ connection to ADZ files. Use the compression and decompression functions documented here
to move back and forth from and to ADF and ADZ formats.

8 connect_adf

Usage

compress_adf (source, destination)

decompress_adz(source, destination)

Arguments
source Path to the source file to read.
destination Path to the destination file to write.
Value

Returns NULL invisibly.

Author(s)
Pepijn de Vries

Examples

adz_file <- system.file("example.adz"”, package = "adfExplorer2")
adf_file <- tempfile(fileext = ".adf")
adz_file2 <- tempfile(fileext = ".adz")

decompress_adz(adz_file, adf_file)
compress_adf (adf_file, adz_file2)

connect_adf Create a connection to a virtual disk

Description

Establish a connection to a virtual disk stored as Amiga Disk Files (ADF). You cannot write or
read directly from this connection. Instead, use the methods provided in this package to retrieve
information about the virtual disk or create connections to the files on the disk, to which you can
write and read from (see adf _file_con()). Like any other connection, please use close() to close
the connection after use.

Usage

connect_adf (filename, write_protected = TRUE)

Arguments

filename Filename of the ADF or ADZ file containing the virtual disk

write_protected
A logical value indicating whether the virtual disk needs to be write protected.
If TRUE, you can only open 'read only’ connections and cannot write to the disk.

copy_adf_entry 9

Value

Returns an R connection of class adf_device.

Author(s)

Pepijn de Vries

Examples

adz_file <- system.file("example.adz"”, package = "adfExplorer2")
my_device <- connect_adf(adz_file)

device_capacity(my_device)
close(my_device)

copy_adf_entry Copy or move files between physical and virtual devices

Description

With these functions you can copy or move entries (files and directories) between a physical and
virtual ADF device. With copy_adf_entry() the files are duplicated, with move_adf_entry() the
files are moved (and deleted from its source).

Usage
copy_adf_entry(source, destination, ...)

S3 method for class 'character'
copy_adf_entry(source, destination, ...)

S3 method for class 'virtual_path'
copy_adf_entry(source, destination, ...)

S3 method for class 'virtual_path'
copy_adf_entry.character(source, destination, ...)

S3 method for class 'virtual_path'
copy_adf_entry.virtual_path(source, destination, ...)

S3 method for class 'character'
copy_adf_entry.virtual_path(source, destination, ...)

move_adf_entry(source, destination, ...)

S3 method for class 'character'
move_adf_entry(source, destination, ...)

10 copy_adf_entry

S3 method for class 'virtual_path'
move_adf_entry(source, destination, ...)

S3 method for class 'virtual_path'
move_adf_entry.character(source, destination, ...)

S3 method for class 'virtual_path'
move_adf_entry.virtual_path(source, destination, ...)

S3 method for class 'character'
move_adf_entry.virtual_path(source, destination, ...)

Arguments

source, destination

The source is a path to a file or directory that needs to be moved or copied.
destination is a path to a directory to which the source needs to be copied or
moved. When source or destinationisacharacter string, it is assumed to be
a path to a file or directory on a physical device. You can use a virtual_path()
for either the source or destination or both. source and destination cannot
both be a character string. For copying and moving files on a physical device
you should you base function file.copy().

Ignored

Author(s)
Pepijn de Vries

Examples

Create an Amiga Disk File
and prepare a file system on the virtual device
my_device <-
create_adf_device(
tempfile(fileext = ".adf"),
write_protected = FALSE) |>
prepare_adf_device()

Copy the packaged R scripts of this package to the virtual device
copy_adf_entry(
system.file("R", package = "adfExplorer2"),
virtual_path(my_device, "DF@:")
)

List all entries on the virtual device
list_adf_entries(my_device, recursive = TRUE)

Move the entire virtual device content to
the tempdir on your physical device
move_adf_entry(

create_adf_device 11

virtual_path(my_device, "DF0@:"),
tempdir ()
)

close(my_device)

create_adf_device Create and format a virtual ADF device

Description

These functions help you to create an empty virtual device that can be used in Commodore Amiga
emulation. create_adf_device() simply creates a file of the proper size (the file size repre-
sents the device capacity) and fills it with raw zeros. In order to use the device in the Amiga
operating system, a file system needs to be installed on the device. This can be achieved with
prepare_adf_device(). Note that the file system itself will also consume disk space on the vir-
tual device.

Usage

create_adf_device(destination, type = "DD"”, ..., connect = TRUE)

prepare_adf_device(

dev,
name = "EMPTY",
ffs = TRUE,

international = TRUE,
dircache = FALSE,
bootable = TRUE,

)

S3 method for class 'adf_device'
prepare_adf_device(

dev,
name = "EMPTY",
ffs = TRUE,

international = TRUE,
dircache = FALSE,
bootable = TRUE,

)
Arguments
destination File path where the virtual device needs to be stored.
type Specify the type of virtual device you wish to create. Should be one of "DD"

(double density floppy disk) or "HD" (high density floppy disk).

12 create_adf_device

Ignored for prepare_adf_device().

connect A logical value. If set to TRUE a connection is opened to the newly created
virtual device and is returned as a adf_device class object. If it is set to FALSE,
the file is just created and no connection is opened. In the latter case NULL is
returned invisibly.

dev The virtual adf device for which information needs to be obtained. It should
be of class adf_device which can be created with create_adf_device() or
connect_adf ().

name A character string specifying the disk name for the volume on the virtual de-
vice. It will be truncated automatically when too long.

ffs A logical value indicating which file system to be used. If TRUE the ’Fast File
System’ (FFS) is used, when FALSE, the *Old File System’ is used. See also
vignette("file_system_modes").

international A logical value indicating whether the international mode should be used for
file naming. See also vignette("file_system_modes").

dircache A logical value indicating whether directory caching should be used. See also
vignette(”"file_system_modes™).

bootable A logical value indicating whether you want to include executable code on the
boot block. If set to TRUE minimal code will be added to the boot block. In an
Amiga emulator, this code will load the Amiga Disk Operating System library
and start the Amiga Command line interface (CLI). It will then run the startup
sequence file from the disk (if available).

If set to FALSE no such code is added. In that case the file system will still be ac-
cessible by the Amiga operating system (if the file system mode is compatible).
You just can’t use the disk to start up a (virtual) Amiga machine.

Value

Either an adf_device connection or NULL depending on the value of connect.

Author(s)

Pepijn de Vries

Examples

Filepath to store the virtual device:
dest <- tempfile(fileext = ".adf")

Create a blank unformated virtual device (a double density floppy disk):
my_device <- create_adf_device(dest, "DD", connect = TRUE, write_protected = FALSE)

print(my_device)

Format the floppy and create a file system on the device:
prepare_adf_device(my_device, name = "foobar")

print(my_device)

device_type 13

don't forget to close the device connection after use:
close(my_device)

device_type Obtain information about an adf_device connection

Description

A collection of functions to retrieve information about the virtual device, or any volume (file system)
available on the device. See examples for usage and results.

Usage
device_type(dev, ...)

S3 method for class 'adf_device'
device_type(dev, ...)

device_capacity(dev, ...)

S3 method for class 'adf_device'
device_capacity(dev, ...)

volume_capacity(dev, ...)

S3 method for class 'adf_device'
volume_capacity(dev, vol = 0oL, ...)

volume_name(dev, ...)

S3 method for class 'adf_device'
volume_name(dev, vol = 0L, ...)

n_volumes(dev, ...)

S3 method for class 'adf_device'
n_volumes(dev, ...)

bytes_free(dev, ...)

S3 method for class 'adf_device'
bytes_free(dev, vol = 0L, ...)

is_bootable(dev, ...)

S3 method for class 'adf_device'

14 device_type

is_bootable(dev, vol = oL, ...)
is_fast_file_system(dev, ...)

S3 method for class 'adf_device'
is_fast_file_system(dev, vol = oL, ...)

is_international(dev, ...)

S3 method for class 'adf_device'
is_international(dev, vol = 0L, ...)

is_dircache(dev, ...)

S3 method for class 'adf_device'
is_dircache(dev, vol = 0L, ...)

is_write_protected(dev, ...)

S3 method for class 'adf_device'

is_write_protected(dev, ...)
Arguments
dev The virtual adf device for which information needs to be obtained. It should

be of class adf_device which can be created with create_adf_device() or
connect_adf ().

Ignored

vol Volume index number on the device starting at @. Default is @. Note that floppy
disks can only have 1 volume installed.

Author(s)

Pepijn de Vries

Examples

adz_file <- system.file("example.adz", package = "adfExplorer2")
my_device <- connect_adf(adz_file)

device_type(my_device)

device_capacity(my_device) # in bytes
volume_capacity(my_device) # in bytes

n_volumes(my_device) # number of volumes available on device

volume_name(my_device) # name of the volume

format.adf _device

bytes_free(my_device) # bytes available for writing

is_bootable(my_device) # tests if device is potentially bootable
is_fast_file_system(my_device) # tests if volume uses FFS
is_international(my_device) # tests if file system uses intl mode
is_dircache(my_device) # tests if file system uses dir caching
is_write_protected(my_device) # tests if device is protected against writing

close(my_device)

format.adf_device Basic methods for S3 class objects

Description

Format and print methods for all S3 class objects created with adfExplorer2

Usage
S3 method for class 'adf_device'
format(x, ...)

S3 method for class 'adf_file_con'
format(x, ...)

S3 method for class 'adf_block'
format(x, ...)

S3 method for class 'virtual_path'
format(x, width = 20L, ...)

S3 method for class 'adf_device'
print(x, ...)

S3 method for class 'adf_file_con'
print(x, ...)

S3 method for class 'adf_block'
print(x, ...)

S3 method for class 'virtual_path'
print(x, ...)

S3 method for class 'virtual_path'
as.character(x, ...)

16 list_adf entries

Arguments
X Object to be formatted or printed
Ignored or passed on to next methods
width Set the text width for formatting virtual paths
list_adf_entries List entries in a directory of a virtual ADF device
Description

Get an overview of all entries (files and directories) in a specific directory.

Usage

list_adf_entries(x, virtual_path, recursive = FALSE, ...)

S3 method for class 'adf_device'
list_adf_entries(x, virtual_path, recursive = FALSE, ...)

S3 method for class 'virtual_path'
list_adf_entries(x, virtual_path, recursive = FALSE, ...)

S3 method for class 'character'
list_adf_entries.adf_device(x, virtual_path, recursive = FALSE, ...)

S3 method for class 'virtual_path'

list_adf_entries.adf_device(x, virtual_path, recursive = FALSE, ...)
Arguments
X Either an adf_device class object, in which case the virtual_path argument

needs to be specified; or, a virtual_path class object.

virtual_path The virtual path for which you wish to obtain a list of entries (see also vignette("virtual_paths")).
When missing, entries for the current directory (adf_directory()) are returned,
wen x is an adf_device class object. If x is a virtual_path class object, con-
tent of the path defined in that object is listed

recursive A logical value. When set to TRUE, the function is called recursively for all
subdirectories in virtual_path.

Ignored

Value

A vector of virtual_path class objects

read_adf block 17

Author(s)

Pepijn de Vries

Examples

First setup a connection to a virtual device
adz_file <- system.file("example.adz"”, package = "adfExplorer2")
my_device <- connect_adf(adz_file)

List all entries in the disk's root:
list_adf_entries(my_device)

List all entries on the disk:
list_adf_entries(my_device, recursive = TRUE)

close(my_device)

read_adf_block Read or write raw data blocks to a virtual device

Description

The Amiga file system is structured around 512 byte blocks. A double density floppy disk consists
of 1760 blocks of 512 bytes. read_adf_block and write_adf_block can be used to transform raw
data from and to virtual devices (created with create_adf_device() or connect_adf()). Note
that writing raw data to a disk could corrupt the file system on the device. So it is generally not
advised unless you know what you are doing.

Usage
read_adf_block(dev, sector, ...)

S3 method for class 'adf_device'
read_adf_block(dev, sector, ...)

write_adf_block(dev, sector, data, ...)

S3 method for class 'adf_device'
write_adf_block(dev, sector, data, ...)

S3 method for class 'raw'
write_adf_block.adf_device(dev, sector, data, ...)

S3 method for class 'adf_block'
write_adf_block.adf_device(dev, sector, data, ...)

Default S3 method:
write_adf_block.adf_device(dev, sector, data, ...)

18 remove_adf_entry

as_adf_block(data, ...)

new_adf_block()

Arguments
dev The virtual adf device for which information needs to be obtained. It should
be of class adf_device which can be created with create_adf_device() or
connect_adf ().
sector Sector ID of the block you wish to read/write. It is an integer value. For double
density disks, the ID ranges from 0 to 1759.
Ignored
data Block data (raw vector of length 512) you wish to write to a virtual device
Value

In case of write_adf_block NULL is returned invisibly. In case of read_adf_block the raw data
is returned as a adf_block class object.

Author(s)
Pepijn de Vries

remove_adf_entry Remove entry (file / directory) from a virtual ADF device

Description

This function removes an entry (file or directory) from a virtual ADF device. At the moment this
function only removes a single entry per call, and in case the entry is a directory, the directory needs
to be empty before it can be removed.

Usage

remove_adf_entry(x, virtual_path, flush = FALSE, ...)

S3 method for class 'adf_device'

remove_adf_entry(x, virtual_path, flush = FALSE, ...)
S3 method for class 'virtual_path'
remove_adf_entry(x, virtual_path, flush = FALSE, ...)

S3 method for class 'character'
remove_adf_entry.adf_device(x, virtual_path, flush

FALSE, ...)

S3 method for class 'virtual_path'
remove_adf_entry.adf_device(x, virtual_path, flush

FALSE, ...)

remove_adf_entry

Arguments

X

virtual_path

flush

Value

19

The virtual ADF device from which an entry needs to be deleted or a virtual
path pointing at the entry to be deleted. In case of a virtual device, it should
be of class adf_device which can be created with create_adf_device() or
connect_adf (). In case of a virtual path use virtual_path().

A character string or a virtual_path (see virtual_path()) representing a file
or directory you wish to delete. Should be omitted when x is alreade a virtual
path.

A logical value. When set to FALSE (default), only the entry’s registry in its
parent directory is removed and its flags in the bitmap block are set to ’available’.
The entry’s header data and if the entry is a file, the file data will still linger on
the virtual disk. If you don’t want that, set this argument to TRUE, in that case
all file or directory data will be purged. Note that in the latter case, it won’t be
possible to recover your deleted file or directory.

Ignored

Returns the device connection

Author(s)

Pepijn de Vries

Examples

We first need a writable connection to an ADF device.
For this purpose we decompress the ADZ file that comes
with this package and open a connection

adz_file <- system.file("example.adz", package = "adfExplorer2")
adf_file <- tempfile(fileext = ".adf")

decompress_adz(adz_file, adf_file)

my_device <- connect_adf(adf_file, write_protected = FALSE)

List files in directory 'Devs':
list_adf_entries(my_device, "Devs")

remove the file 'system-configuration' from the virtual device
remove_adf_entry(my_device, "devs/system-configuration”)

List files in directory 'Devs' again:
list_adf_entries(my_device, "Devs")

close the connection to the virtual device

close(my_device)

20 virtual_path

virtual_path A path pointing to a file or directory on a virtual ADF device

Description

This function creates a path pointing to a file or directory on a virtual ADF device (created with
connect_adf () or create_adf_device()). The virtual path created with this function can be
used to establish a readable or writable connection to a file, or obtain information about a file or
directory. See also vignette("virtual_paths")

Usage

virtual_path(dev, virtual_path)

Arguments

dev A virtual ADF device (created with connect_adf () or create_adf_device()).
Make sure a file system is present on the virtual device or install first when miss-
ing using prepare_adf_device().

virtual_path A character string representing the path to a file or directory on the virtual
device.

Value

Returns a virtual_path class object.

Author(s)

Pepijn de Vries
Examples
adz_file <- system.file("example.adz", package = "adfExplorer2")

Open a connection to a virtual device:
my_device <- connect_adf(adz_file)

specify a virtual path:
my_path <- virtual_path(my_device, "DF@:s/startup-sequence”)

close the virtual device:
close(my_device)

Index

adf_dir_exists (adf_file_exists), 6
adf_directory, 2
adf_directory(), 16
adf_directory<- (adf_directory), 2
adf_entry_info, 4
adf_file_con, 5
adf_file_con(), 8
adf_file_exists, 6
as.character.virtual_path
(format.adf_device), 15
as_adf_block (read_adf_block), 17

bytes_free (device_type), 13

close(), 6,8

compress_adf, 7

connect_adf, 8
connect_adf (), 3, 5, 12, 14, 17-20
copy_adf_entry, 9
create_adf_device, 11
create_adf_device(), 3, 12, 14, 17-20

decompress_adz (compress_adf), 7
device_capacity (device_type), 13
device_type, 13
dir.exists(), 6

file.copy(), 10

file.exists(), 6

format.adf_block (format.adf_device), 15

format.adf_device, 15

format.adf_file_con
(format.adf_device), 15

format.virtual_path
(format.adf_device), 15

is_bootable (device_type), 13
is_dircache (device_type), 13
is_fast_file_system (device_type), 13
is_international (device_type), 13
is_write_protected (device_type), 13

21

list_adf_entries, 16

make_adf_dir (adf_directory), 2
move_adf_entry (copy_adf_entry), 9

n_volumes (device_type), 13
new_adf_block (read_adf_block), 17

prepare_adf_device (create_adf_device),
11

prepare_adf_device(), 20

print.adf_block (format.adf_device), 15

print.adf_device (format.adf_device), 15

print.adf_file_con (format.adf_device),
15

print.virtual_path (format.adf_device),
15

read_adf_block, 17
readBin(), 5
readLines(), 5
remove_adf_entry, 18

virtual_path, 20
virtual_path(), 3-5, 7, 10, 19
volume_capacity (device_type), 13
volume_name (device_type), 13

write_adf_block (read_adf_block), 17
writeBin(), 5
writeLines(), 5

	adf_directory
	adf_entry_info
	adf_file_con
	adf_file_exists
	compress_adf
	connect_adf
	copy_adf_entry
	create_adf_device
	device_type
	format.adf_device
	list_adf_entries
	read_adf_block
	remove_adf_entry
	virtual_path
	Index

